Khovanskii-finite rational curves of arithmetic genus 2

Ahmad Mokhtar

Joint work with: Nathan IIten

Simon Fraser University

5i゙ロा2. Conference on
Applied Algebraic Geometry

Motivating problem

- Given an embedded projective variety $X \subset \mathbb{P}^{n}$, does it admit a toric degeneration?

Motivating problem

- Given an embedded projective variety $X \subset \mathbb{P}^{n}$, does it admit a toric degeneration?
- Embedded toric degeneration:

$$
\begin{aligned}
& \Phi: \mathcal{X} \rightarrow \mathbb{A}^{1} \\
& \Phi^{-1}(t) \cong X, \quad t \in \mathbb{A}^{1} \backslash\{0\} \\
& \Phi^{-1}(0) \quad \text { is a toric variety. }
\end{aligned}
$$

Φ : flat, \mathbb{G}_{m}-equivariant.

Motivating problem

- Given an embedded projective variety $X \subset \mathbb{P}^{n}$, does it admit a toric degeneration?
- Embedded toric degeneration:

$$
\begin{aligned}
& \Phi: \mathcal{X} \rightarrow \mathbb{A}^{1} \\
& \Phi^{-1}(t) \cong X, \quad t \in \mathbb{A}^{1} \backslash\{0\} \\
& \Phi^{-1}(0) \quad \text { is a toric variety. }
\end{aligned}
$$

Φ : flat, \mathbb{G}_{m}-equivariant.

- Applications: Mirror symmetry, numerical algebraic geometry, Seshadri constants, ...

Toric degeneration of a rational quintic curve in \mathbb{P}^{3}

Toric degeneration of a rational quintic curve in \mathbb{P}^{3}

Background

- $X \subset \mathbb{P}^{n} \quad$ Does it admit an embedded toric degeneration?

Background

- $X \subset \mathbb{P}^{n} \quad$ Does it admit an embedded toric degeneration?
- Theorem [Anderson]:
$R: \quad$ homogeneous coordiante ring of X
If there exists a homogeneous Khovanskii-finite valuation on R, then X admits a toric degeneration.

Background

- $X \subset \mathbb{P}^{n} \quad$ Does it admit an embedded toric degeneration?
- Theorem [Anderson]:
$R: \quad$ homogeneous coordiante ring of X
If there exists a homogeneous Khovanskii-finite valuation on R, then X admits a toric degeneration.
- Rational curves:
- Rational curves of arithmetic genus 0 and 1: Yes [Ilten, Wrobel]
- Very general rational quartic plane curve: No [Ilten, Wrobel]
- Our work: Rational curves of arithmetic genus 2

Valuations

- R : \mathbb{Z}-graded homogeneous coordinate ring of X

Valuations

- R : \mathbb{Z}-graded homogeneous coordinate ring of X
- homogeneous valuation: $\nu: R \backslash\{0\} \rightarrow \mathbb{Z} \times \mathbb{Z}^{\operatorname{dim} X}$
- $\nu(c)=0$ for $c \in \mathbb{K} \backslash\{0\}$,
- $\nu(a b)=\nu(a)+\nu(b)$,
- $\nu(a+b) \geq \min \{\nu(a), \nu(b)\}$,
- when $a \in R$ is homogeneous then $\nu(a)=(\operatorname{deg} a, \ldots)$.

Valuations

- R : \mathbb{Z}-graded homogeneous coordinate ring of X
- homogeneous valuation: $\nu: R \backslash\{0\} \rightarrow \mathbb{Z} \times \mathbb{Z}^{\operatorname{dim} X}$
- $\nu(c)=0$ for $c \in \mathbb{K} \backslash\{0\}$,
- $\nu(a b)=\nu(a)+\nu(b)$,
- $\nu(a+b) \geq \min \{\nu(a), \nu(b)\}$,
- when $a \in R$ is homogeneous then $\nu(a)=(\operatorname{deg} a, \ldots)$.

- ν is Khovanskii-finite if the value semigroup is full-rank and finitely-generated.

Valuations on rational curves

- Coordinate rings $R(L)=\bigoplus_{k \geq 0} L^{k}, \quad L \subset \mathbb{K}[x, y]_{d}$

Valuations on rational curves

- Coordinate rings $R(L)=\bigoplus_{k \geq 0} L^{k}, \quad L \subset \mathbb{K}[x, y]_{d}$
- [IIten, Manon] For $(\alpha: \beta) \in \mathbb{P}^{1}$, there is a valuation

$$
\begin{aligned}
\nu_{(\alpha: \beta)}: R(L) \backslash\{0\} & \rightarrow \mathbb{Z} \times \mathbb{Z}, \\
f \in L^{k} & \mapsto\left(k, \operatorname{ord}_{(\alpha ; \beta)} f\right)
\end{aligned}
$$

Valuations on rational curves

- Coordinate rings $R(L)=\bigoplus_{k \geq 0} L^{k}, \quad L \subset \mathbb{K}[x, y]_{d}$
- [IIten, Manon] For $(\alpha: \beta) \in \mathbb{P}^{1}$, there is a valuation

$$
\begin{aligned}
\nu_{(\alpha: \beta)}: R(L) \backslash\{0\} & \rightarrow \mathbb{Z} \times \mathbb{Z}, \\
f \in L^{k} & \mapsto\left(k, \operatorname{ord}_{(\alpha ; \beta)} f\right) .
\end{aligned}
$$

- [IIten, Wrobel] K-finite criterion: Given L and $(\alpha: \beta)$ $\nu_{(\alpha: \beta)}$ on $R(L)$ is K -finite \Longleftrightarrow there is k with $(\beta x-\alpha y)^{d k} \in L^{k}$

Main result

- Theorem [IIten, M.]:
$X \subset \mathbb{P}^{n}$: non-degenerate rational curve of degree d and arithmetic genus 2 over a number field with degree ℓ.
Then, in the K-finite criterion of Ilten-Wrobel we need only consider

$$
1 \leq k \leq \max \left\{2(d-n-1),\left(\left(96 d^{3} \ell\right)^{2}+2\right)^{2}\right\}
$$

Main result

- Theorem [IIten, M.]:
$X \subset \mathbb{P}^{n}$: non-degenerate rational curve of degree d and arithmetic genus 2 over a number field with degree ℓ.
Then, in the K-finite criterion of Ilten-Wrobel we need only consider

$$
1 \leq k \leq \max \left\{2(d-n-1),\left(\left(96 d^{3} \ell\right)^{2}+2\right)^{2}\right\}
$$

- Proof: reduce to degree d curves in \mathbb{P}^{d-2}

$$
\begin{aligned}
& X^{\prime} \subset \mathbb{P}^{d-2} \\
& \downarrow \downarrow \\
& X \subset \mathbb{P}^{n}
\end{aligned}
$$

Parametrizing degree d curves in \mathbb{P}^{d-2}

Parametrizing degree d curves in \mathbb{P}^{d-2}

Parametrizing degree d curves in \mathbb{P}^{d-2}

- Buczyński, Ilten and Ventura classified the resulting singularities and conditions on the center.

Parametrizing degree d curves in \mathbb{P}^{d-2}

- Buczyński, Ilten and Ventura classified the resulting singularities and conditions on the center.
- 8 configurations of singularities

Parametrizing degree d curves in \mathbb{P}^{d-2}

- Buczyński, Ilten and Ventura classified the resulting singularities and conditions on the center.
- 8 configurations of singularities
- Ex: family of curves with a cusp with smooth branch

Parametrizing degree d curves in \mathbb{P}^{d-2}

- Buczyński, Ilten and Ventura classified the resulting singularities and conditions on the center.
- 8 configurations of singularities
- Ex: family of curves with a cusp with smooth branch

$$
(x: y) \mapsto\left(x^{d}-a x^{d-1} y-y^{d}: x^{d-2} y^{2}: \cdots: x y^{d-1}\right) \in \mathbb{P}^{d-2}
$$

$$
R=\bigoplus_{k \geq 0} L^{k}, \quad L \subset \mathbb{K}[x, y]_{d}
$$

Curves with a cusp with smooth branch

- X_{a} for $a \in \mathbb{A}^{1}$
- Valuation $(\alpha: \beta) \in \mathbb{P}^{1}$

Curves with a cusp with smooth branch

- X_{a} for $a \in \mathbb{A}^{1}$
- Valuation $(\alpha: \beta) \in \mathbb{P}^{1}$
- $\nu_{(\alpha: \beta)}$ is K-finite on $X_{a} \Longleftrightarrow \frac{a}{d}$ is a root of unity, $\frac{\alpha}{\beta}=\frac{a}{d}$.

Curves with a cusp with smooth branch

- X_{a} for $a \in \mathbb{A}^{1}$
- Valuation $(\alpha: \beta) \in \mathbb{P}^{1}$
- $\nu_{(\alpha: \beta)}$ is K-finite on $X_{a} \Longleftrightarrow \frac{a}{d}$ is a root of unity, $\frac{\alpha}{\beta}=\frac{a}{d}$.

Degree: $d=5$, Curve: $a=5$, Valuation: $\nu_{(1: 1)}$

