Khovanskii-finite rational curves of arithmetic genus 2

Ahmad Mokhtar

Joint work with: Nathan Ilten

Simon Fraser University

Siam. Conference on 2023 Applied Algebraic Geometry

Motivating problem

Given an embedded projective variety X ⊂ Pⁿ, does it admit a toric degeneration?

Motivating problem

- Given an embedded projective variety X ⊂ Pⁿ, does it admit a toric degeneration?
- Embedded toric degeneration:

$$egin{aligned} \Phi &: \mathcal{X} o \mathbb{A}^1 \ \Phi^{-1}(t) &\cong X, \qquad t \in \mathbb{A}^1 ackslash \{0\} \ \Phi^{-1}(0) & ext{is a toric variety.} \end{aligned}$$

 Φ : flat, \mathbb{G}_m -equivariant.

Motivating problem

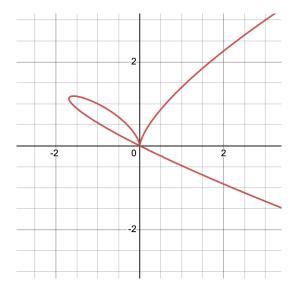
- Given an embedded projective variety X ⊂ Pⁿ, does it admit a toric degeneration?
- Embedded toric degeneration:

$$egin{array}{lll} \Phi: \mathcal{X} o \mathbb{A}^1 \ \Phi^{-1}(t) \cong X, & t \in \mathbb{A}^1 ackslash \{0\} \ \Phi^{-1}(0) & ext{is a toric variety.} \end{array}$$

 Φ : flat, \mathbb{G}_m -equivariant.

• Applications: Mirror symmetry, numerical algebraic geometry, Seshadri constants, ...

Toric degeneration of a rational quintic curve in \mathbb{P}^3



Toric degeneration of a rational quintic curve in \mathbb{P}^3

Background

• $X \subset \mathbb{P}^n$ Does it admit an embedded toric degeneration?

Background

• $X \subset \mathbb{P}^n$ Does it admit an embedded toric degeneration?

- Theorem [Anderson]:
 - R: homogeneous coordiante ring of X

If there exists a **homogeneous Khovanskii-finite** valuation on R, then X admits a toric degeneration.

Background

• $X \subset \mathbb{P}^n$ Does it admit an embedded toric degeneration?

- Theorem [Anderson]:
 - R: homogeneous coordiante ring of X

If there exists a **homogeneous Khovanskii-finite** valuation on R, then X admits a toric degeneration.

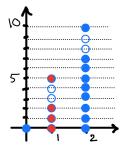
- Rational curves:
 - ▶ Rational curves of arithmetic genus 0 and 1: Yes [Ilten, Wrobel]
 - Very general rational quartic plane curve : No [Ilten, Wrobel]
 - **Our work:** Rational curves of arithmetic genus 2

Valuations

• $R: \mathbb{Z}$ -graded homogeneous coordinate ring of X

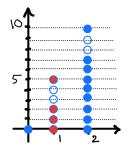
Valuations

- $R: \mathbb{Z}$ -graded homogeneous coordinate ring of X
- homogeneous valuation: $\nu: R \setminus \{0\} \to \mathbb{Z} \times \mathbb{Z}^{\dim X}$
- ▶ $u(c) = 0 \text{ for } c \in \mathbb{K} \setminus \{0\},$
- $\nu(ab) = \nu(a) + \nu(b)$,
- $\nu(a+b) \geq \min\{\nu(a), \nu(b)\},\$
- when $a \in R$ is homogeneous then $\nu(a) = (\deg a, \ldots)$.



Valuations

- R: \mathbb{Z} -graded homogeneous coordinate ring of X
- homogeneous valuation: $\nu: R \setminus \{0\} \to \mathbb{Z} \times \mathbb{Z}^{\dim X}$
- $\nu(c) = 0$ for $c \in \mathbb{K} \setminus \{0\}$,
- $\nu(ab) = \nu(a) + \nu(b)$,
- $\nu(a+b) \geq \min\{\nu(a), \nu(b)\},\$
- when $a \in R$ is homogeneous then $\nu(a) = (\deg a, \ldots)$.



• ν is **Khovanskii-finite** if the value semigroup is full-rank and finitely-generated.

Valuations on rational curves

• Coordinate rings
$$R(L) = \bigoplus_{k \geq 0} L^k$$
, $L \subset \mathbb{K}[x, y]_d$

Valuations on rational curves

• Coordinate rings
$$R(L) = \bigoplus_{k \geq 0} L^k$$
, $L \subset \mathbb{K}[x, y]_d$

• [Ilten, Manon] For $(\alpha:\beta)\in\mathbb{P}^1$, there is a valuation

$$u_{(lpha:eta)}: R(L) \setminus \{0\} o \mathbb{Z} imes \mathbb{Z},
onumber \ f \in L^k \mapsto (k, \operatorname{ord}_{(lpha:eta)} f).$$

Valuations on rational curves

• Coordinate rings
$$R(L) = \bigoplus_{k \geq 0} L^k$$
, $L \subset \mathbb{K}[x, y]_d$

• [Ilten, Manon] For $(\alpha:\beta)\in\mathbb{P}^1$, there is a valuation

$$u_{(lpha:eta)}: R(L) \setminus \{0\} o \mathbb{Z} imes \mathbb{Z},
onumber \ f \in L^k \mapsto (k, \operatorname{ord}_{(lpha:eta)} f).$$

• [Ilten, Wrobel] K-finite criterion: Given L and $(\alpha : \beta)$ $\nu_{(\alpha:\beta)}$ on R(L) is K-finite \iff there is k with $(\beta x - \alpha y)^{dk} \in L^k$

Main result

• Theorem [Ilten, M.]:

 $X \subset \mathbb{P}^n$: non-degenerate rational curve of degree d and arithmetic genus 2 over a number field with degree ℓ .

Then, in the K-finite criterion of Ilten-Wrobel we need only consider

$$1 \le k \le \max\left\{2(d-n-1), \left((96d^3\ell)^2+2\right)^2\right\}.$$

Main result

• Theorem [Ilten, M.]:

 $X \subset \mathbb{P}^n$: non-degenerate rational curve of degree d and arithmetic genus 2 over a number field with degree ℓ .

Then, in the K-finite criterion of Ilten-Wrobel we need only consider

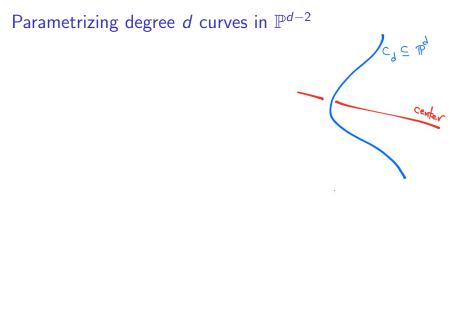
$$1 \le k \le \max\left\{2(d-n-1), \left((96d^3\ell)^2+2\right)^2\right\}.$$

• Proof: reduce to degree d curves in \mathbb{P}^{d-2}

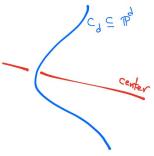
$$X' \subset \mathbb{P}^{d-2}$$

 $\downarrow X \subset \mathbb{P}^n$

Cd C Bq

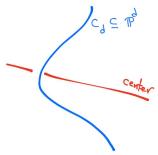


 Buczyński, Ilten and Ventura classified the resulting singularities and conditions on the center.



 Buczyński, Ilten and Ventura classified the resulting singularities and conditions on the center.

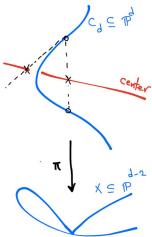
• 8 configurations of singularities



 Buczyński, Ilten and Ventura classified the resulting singularities and conditions on the center.

• 8 configurations of singularities

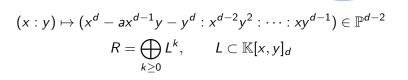
• Ex: family of curves with a cusp with smooth branch



 Buczyński, Ilten and Ventura classified the resulting singularities and conditions on the center.

• 8 configurations of singularities

• Ex: family of curves with a cusp with smooth branch



C, C Pd

Curves with a cusp with smooth branch

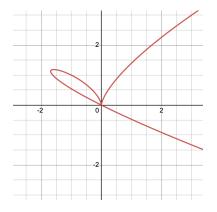
- X_a for $a \in \mathbb{A}^1$
- Valuation $(\alpha : \beta) \in \mathbb{P}^1$

Curves with a cusp with smooth branch

- X_a for $a \in \mathbb{A}^1$
- Valuation $(\alpha : \beta) \in \mathbb{P}^1$
- $\nu_{(\alpha:\beta)}$ is K-finite on $X_a \iff \frac{a}{d}$ is a root of unity, $\frac{\alpha}{\beta} = \frac{a}{d}$.

Curves with a cusp with smooth branch

- X_a for $a \in \mathbb{A}^1$
- Valuation $(\alpha:\beta) \in \mathbb{P}^1$
- $\nu_{(\alpha:\beta)}$ is K-finite on $X_a \iff \frac{a}{d}$ is a root of unity, $\frac{\alpha}{\beta} = \frac{a}{d}$.



Degree: d = 5, Curve: a = 5, Valuation: $\nu_{(1:1)}$