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Motivating problem

@ Given an embedded projective variety X C IP”, does it admit a toric
degeneration?
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Motivating problem

@ Given an embedded projective variety X C IP”, does it admit a toric

degeneration?

@ Embedded toric degeneration:

o X - Al
o 1(t) = X, t € AN\ {0}
®~1(0) s a toric variety.

® : flat, G,-equivariant.

@ Applications: Mirror symmetry, numerical algebraic geometry,
Seshadri constants, ...
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Toric degeneration of a rational quintic curve in P3
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Background

o X CP" Does it admit an embedded toric degeneration?

@ Theorem [Anderson]:
R: homogeneous coordiante ring of X

If there exists a homogeneous Khovanskii-finite valuation on R,
then X admits a toric degeneration.

@ Rational curves:
» Rational curves of arithmetic genus 0 and 1: Yes [llten, Wrobel]

» Very general rational quartic plane curve : No [llten, Wrobel]

» Our work: Rational curves of arithmetic genus 2
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Valuations

@ R: Z-graded homogeneous coordinate ring of X
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Valuations

@ R: Z-graded homogeneous coordinate ring of X
e homogeneous valuation: v : R\{0} — Z x zdimX

v
<

(c) =0 for c € K\{0},
(ab) = v(a) +v(b),
(a + b) = min{v(a), v(b)},

» when a € R is homogeneous then
v(a) = (dega,...).
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v
<

(c) =0 for c € K\{0},
(ab) = v(a) +v(b),
(a + b) = min{v(a), v(b)},

» when a € R is homogeneous then
v(a) = (dega,...).

v
<

v
<

o v is Khovanskii-finite if the value semigroup is full-rank and
finitely-generated.
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Valuations on rational curves

o Coordinate rings R(L) = @, L*,

LC K[X7y]d
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Valuations on rational curves

o Coordinate rings R(L) = P> Lk, L Cc K[x, yld

o [liten, Manon] For (a : B) € P, there is a valuation
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Valuations on rational curves

o Coordinate rings R(L) = P> Lk, L Cc K[x, yld

o [liten, Manon] For (a : B) € P, there is a valuation

Y:p) * R(L)\{O} — 7 X 7,
f e LX— (k,ord(q.p)f).

o [liten, Wrobel] K-finite criterion: Given L and (« : )

V(a:g) ON R(L) is K-finite <= there is k with (8x — ay)® ¢ L
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Main result

@ Theorem [liten, M.]:
X C P": non-degenerate rational curve of degree d and arithmetic
genus 2 over a number field with degree /.
Then, in the K-finite criterion of Ilten-Wrobel we need only consider

1<k< max{z(d —n—1),((96d%) + 2)2} .
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Main result

@ Theorem [liten, M.]:
X C P": non-degenerate rational curve of degree d and arithmetic
genus 2 over a number field with degree /.
Then, in the K-finite criterion of Ilten-Wrobel we need only consider

1<k< max{z(d —n—1),((96d%) + 2)2} .

@ Proof: reduce to degree d curves in P92

X' cpd—2

/

X cPr
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Parametrizing degree d curves in P92

8/9



Parametrizing degree d curves in P92

8/9
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@ Buczynski, llten and Ventura classified
the resulting singularities and conditions
on the center.
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Parametrizing degree d curves in P92

@ Buczynski, llten and Ventura classified
the resulting singularities and conditions
on the center.

@ 8 configurations of singularities

e Ex: family of curves with a cusp with /\;;—m
smooth branch RS
(x:y) > (x4 —ax97ly — yd . x972y2 o xyd ) e pd2
R=ELr, LcKlxylg
k>0
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Curves with a cusp with smooth branch

e X, foraec Al
e Valuation (a : 8) € P!
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e X, foraec Al
e Valuation (a : 8) € P!
® V(q:p) is K-finite on X; <= J is a root of unity, 5 =

a

R

9/9



Curves with a cusp with smooth branch

e X, foraec Al
e Valuation (a : 8) € P!
® V() is K-finite on X; <—

Qlu

is a root of unity,% =

it

Degree: d =5, Curve:

a =5, Valuation: v(1.1

a

R
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