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Introducing the problem
Fix n ≥ 3 and let Sn be the vector space of all symmetric matrices over an algebraically closed field of
characteristic not equal to 2. We are interested in the following question:

What are vector subspaces of Sn such that every element is a singular matrix?

It turns out that the space parametrizing all such subspaces (henceforth called singular subspaces)
exhibits a rich geometry as we will investigate.

Examples
Let 0 ≤ s ≤ n−1

2 be an integer. The following is an example of a singular subspace of Sn:



s n − 2s − 1 s + 1

s ∗ ∗ ∗

n − 2s − 1 ∗ ∗ 0

s + 1 ∗ 0 0


(1)

Here the entries in the star blocks can either vary freely over the field or they could have linear depen-
dencies. The maximum dimension of such a subspace occurs when every entry in the star blocks varies
freely and we denote this maximum dimension by κ(s) + 1.
The general linear group GL(n) acts on Sn via APAt for every A ∈ GL(n) and P ∈ Sn. This action
takes a singular subspace to a singular one. For a fixed s, we call any GL(n) translate of a subspace of
the above form an s-compression space [3].
An example of a non-compression space is the 3-dimensional singular subspace.

Q =
(

0 B
Bt 0

)
6×6

, where B =

 0 z0 z1
−z0 0 z2
−z1 −z2 0

 , and zi are free variables.

Background
We understand compression spaces very well, and two interesting questions are

For a fixed n,
1. What is the maximum dimension of a singular subspace of Sn?
2. What are the linear dimensions ` such that every singular subspace of dimension ` is a

compression space?

A theorem due to Meshulam answers the first question.

Theorem 1 (Meshulam [4]). The maximum linear dimension of a singular subspace of Sn is
(n

2
)
.

The next relevant result is that of Loewy and Radwan which characterizes the singular subspaces attaining
the above maximum dimension. They showed every singular subspace of maximum dimension is a
compression space. Pazzis generalized this result to dimensions near the maximum dimension:

Theorem 2 (Pazzis [2]). Let P be an `-dimensional singular subspace of Sn. If

` > max {κ(1) + 1, κ(d − 1) + 1} ,

where d = bn−1
2 c then P is either a 0- or d-compression space.

This project aims to revisit these results from a geometric perspective to provide shorter proofs that are
easier to understand and in the case of Pazzis’ result, we would like to try to improve the range of values
` for which the statement holds. The geometric approach is via Fano schemes. This approach was taken
by Ilten and Chan in their study of subspaces of rectangular matrices of bounded rank [1].

Geometric perspective
Let P(n+1

2 )−1 = P(Sn) be the space of all symmetric n × n matrices up to scalar multiplication. Define
SDn to be the hypersurface in P(Sn) given by the vanishing of the determinant of

x1,1 x1,2 · · · x1,n
x1,2 x2,2 · · · x2,n... . . . ...
x1,n x2,n · · · xn,n

 .

Here xi ,j are the homogeneous coordinates on P(Sn). Fixing k > 0, a (k + 1)-dimensional singular
subspace of Sn corresponds to a k-plane lying on the hypersurface SDn. The Grassmannian Gr(k +1, Sn)
parametrizes all k-planes in P(Sn) and we are interested in the locus

Fk(SDn) = {k-planes lying on SDn} ⊂ Gr(k + 1, Sn).

This locus is closed and there is a natural way of defining a scheme structure (not discussed here) on it
that comes from the defining equation of SDn. With this scheme structure, we call Fk(SDn), the Fano
scheme of k-planes on SDn.

Examples of Fano schemes: Let n = 3 and k = 2. The Fano scheme F2(SD3) ⊂ Gr(3, 6)
parametrizes 3-dimensional singular subspaces of 3 × 3 symmetric matrices:

The scheme F2(SD3) has two disjoint irreducible components each of dimension 2.

The goals of this project is that given n, k we would like to know the following for Fk(SDn):

1. Is it irreducible? If not irreducible, what are (some of) the components?
2. Is it smooth?
3. Is it connected?

Answering these question (even partial answers) translates back to results on singular subspaces of Sn
such as recovering results of Meshulam and Pazzis.

Analyzing the geometry: Fixed points
By Borel fixed point theorem, the subgroup Bn ⊂ GL(n) consisting of all upper triangular matrices has
the property that if it acts on a complete variety, it will have a fixed point, called a Borel fixed point.
This is the case with Fano schemes, therefore we have at least one fixed point on every irreducible
component of Fk(SDn) and on the non-empty intersection of every two components. We gain much
information by characterizing Borel fixed points of Fk(SDn).

Proposition (M.): The Borel fixed points of Fk(SDn) are exactly singular subspaces of Sn of the
form (1) where each entry in the star blocks is either zero for every matrix or varies freely. Moreover,
if an entry is zero, all entries to the right and bottom are zero too.
Example: Let n = 3 and k = 1. The subspace on the left is a Borel fixed point but the one on the
right is not (each zi is a free variable).z0 z1 0

z1 0 0
0 0 0

 ,

 0 z1 0
z1 z0 0
0 0 0

 .

Characterizing connectedness
Theorem (M.): Given n and k there is a combinatorial characterization of connectedness for Fk(SDn).
Build a graph as follows: Draw a vertex for each integer 0 ≤ s ≤ n−1

2 if the scheme has a Borel fixed
point that is an s-compression space. Two vertices s, s ′ are adjacent if there is a Borel fixed point that
is both an s- and an s ′-compression space. Then the set of connected components of Fk(SDn) is in
bijection with the set of connected components of this graph.
Example: Let n = 12, the graphs for two values of k are as follows:

We see that for k = 44, the scheme is connected, but when k = 46, there are 4 connected components.

Characterizing irreducibility
Theorem (M.): The scheme Fk(SDn) is irreducible if and only if the graph associated to the scheme
(defined above) has only one vertex. In this case, every point of the scheme is a 0-compression space.

Smoothness
Theorem (M.): Fix n. For each integer 0 ≤ s < n−1

2 , the scheme Fκ(s)(SDn) has an irreducible
component that is generically non-reduced. In particular, the scheme is not smooth.
We suspect this pathology happens for every k, that is we conjecture the following
Conjecture: The scheme Fk(SDn) always has an irreducible component that is generically non-
reduced, in particular the scheme is never smooth.

Fano scheme of lines
The following result gives a complete list of irreducible components of F1(SDn).
Theorem (M.): The Fano scheme F1(SDn) has bn−1

2 c+1 irreducible components, each of dimension
n2 − 5. For each integer 0 ≤ s ≤ bn−1

2 c, the s-compression spaces form a component. These
components intersect pairwise and the graph of the scheme is the complete graph on bn−1

2 c + 1
vertices.
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