This page is automatically generated from the source code FanoScheme.m by a prototype MAGMA documentation generator created by Ahmad Mokhtar.

FanoScheme

MAGMA Package Author Ahmad Mokhtar Updated Feb 26, 2024

FanoScheme is a package in MAGMA for computation with Fano schemes of embedded projective varieties. Let $X \subset \mathbb{P}^{n}$ be an embedded projective variety. Then the Fano scheme $\mathbf{F}_{k}(X)$ of k-planes in X is the fine moduli space that parametrizes those k-planes contained in X. The scheme $\mathbf{F}_{k}(X)$ is a subscheme of the Grassmannian $\mathbb{G}(k, n)$.

Moreover, a Grassmannian $\mathbb{G}(k, n)$ is the same as the Fano scheme $\mathbf{F}_{k}\left(\mathbb{P}^{n}\right)$.

List of intrinsics

FanoScheme(X,k, grassAmbient) : Sch,RngIntElt,Prj \rightarrow Sch FanoScheme (X,k) : Sch,RngIntElt $->$ Sch Grassmannian(k, n,_grassAmbient) : RngIntElt,RngIntElt,Prj. -> Sch
Grassmannian (k, P) : RngIntElt, Prj $->$ Sch
Grassmannian(k, P,_grassAmbient) : RngIntElt,PrjıPrj $->$ Sch

Description

FanoScheme(X, k, grassAmbient) : Sch,RngIntElt,Prj -> Sch

Returns the Fano scheme $\mathbf{F}_{k}(X)$ as a subscheme of a Grassmannian $\mathbb{G}(k, r)$ embedded in the projective space grassAmbient. The dimension of grassAmbient must be equal to $\binom{r+1}{k+1}$ where r is the dimension of the ambient projective space of X, otherwise an error occurs. The returned Fano scheme is a subscheme of grassAmbient.

FanoScheme(X , k) : Sch,RngIntElt -> Sch
Returns the Fano scheme $\mathbf{F}_{k}(X)$ as a subscheme of a Grassmannian $\mathbb{G}(k, r)$ embedded in a projective space of dimension $\binom{r+1}{k+1}$. It creates a projective space ambientSpace of dimension $\binom{r+1}{k+1}$ and then calls FanoScheme (X, k, grassAmbient).

Example 1 : The famous Cayley-Salmon theorem asserts that a smooth cubic surface in \mathbb{P}^{3} contains exactly 27 lines. We will use FanoScheme to demonstrate the theorem.

```
> KK:=Rationals();
> KK;
Rational Field
> P<x,y,z,w>:=ProjectiveSpace(KK,3);
> P;
Projective Space of dimension 3 over Rational Field
Variables: x, y, z, w
> grassAmbient<p_0,p_1,p_2,p_3,p_4,p_5>:=ProjectiveSpace(KK,5);
> grassAmbient;
Projective Space of dimension 5 over Rational Field
Variables: p_0, p_1, p_2, p_3, p_4, p_5
> X:=Scheme(P, x^3+y^3+z^3+w^ 3);
> X;
Scheme over Rational Field defined by
x^3 + y^3 + z^3 + w^3
> Y:=FanoScheme(X,1,grassAmbient);
> Dimension(Y);
0
> Degree(Y);
27
```

Example 2 : The smooth quadric $X \subset \mathbb{P}^{3}$ defined by $x y-z w=0$ has two disjoint family of lines, namely its two sets of rulings. Let's examine the Fano scheme $\mathbf{F}_{1}(X)$. We will see that the Fano scheme $\mathbf{F}_{1}(X)$ has two irreducible components. They are curves of degree 2. Upon inspecting the equations for each compnent, we see that they are two disjoint conics in the Grassmannian $\mathbb{G}(1,3)$.

```
KK;
Rational Field
> P<x,y,z,w>:=ProjectiveSpace(KK,3);
> P;
Projective Space of dimension 3 over Rational Field
Variables: x, y, z, w
> grassAmbient<p_0,p_1,p_2,p_3,p_4,p_5>:=ProjectiveSpace(KK,5);
> grassAmbient;
Projective Space of dimension 5 over Rational Field
Variables: p_0, p_1, p_2, p_3, p_4, p_5
x:=Scheme(P, x*y-z*w);
X;
Scheme over Rational Field defined by
x*y - z*w
> Y:=FanoScheme(X,1,grassAmbient);
for component in IrreducibleComponents(Y) do
    component;
    printf "Dimension of component = %o\n", Dimension(component);
    printf "Degree of component = %o\n", Degree(component);
    print "-----";
end for;
Scheme over Rational Field defined by
p_2*p_3 + p_5^2,
p_0 - p_5,
p_1,
p_4
Dimension of component = 1
Degree of component = 2
-----
Scheme over Rational Field defined by
p_1*p_4 + p_5^2,
p_0 + p_5,
p_2,
p_3
Dimension of component = 1
Degree of component = 2
```

Grassmannian(k, n, grassAmbient) : RngIntElt,RngIntElt,Prj -> Sch

Returns the Grassmannian $\mathbb{G}(k, r)$ of k-planes in an n-projective space P. It works by calling FanoScheme(P, k, grassAmbient). The returned Grassmannian is a subscheme of the
ambient projective space grassAmbient which must have dimension $\binom{n+1}{k+1}-1$, otherwise an error occurs.

Grassmannian(k, P) : RngIntElt,Prj -> Sch
Returns the Grassmannian $\mathbb{G}(k, P)$ of k-planes in the n-projective space P by calling FanoScheme (P, k) . The returned Grassmannian is a subscheme of an ambient projective space of dimension $\binom{n+1}{k+1}-1$.
 Grassmannian(k, P, grassAmbient) : RngIntElt,Prj,Prj -> Sch

Returns the Grassmannian $\mathbb{G}(k, P)$ of k-planes in the n-projective space P by calling
FanoScheme (P, k, grassAmbient). The returned Grassmannian is a subscheme of the ambient projective space grassAmbient which must have dimension $\binom{n+1}{k+1}-1$, otherwise an error occurs.

Example 3 : We create the Grassmannian $\mathbb{G}(1,3)$ and display its Plücker relation.

```
> KK:=Rationals();
> KK;
Rational Field
> grassAmbient<p_0,p_1,p_2,p_3,p_4,p_5>:=ProjectiveSpace(KK,5);
> grassAmbient;
Projective Space of dimension 5 over Rational Field
Variables: p_0, p_1, p_2, p_3, p_4, p_5
> G:=Grassmannian(1,3,grassAmbient);
> G;
Scheme over Rational Field defined by
p_2*p_3 - p_1*p_4 + p_0*p_5
```

